
R and RStudio Cloud
A HeRtie Basic Review

Stats I TAs
2020

Introductory note
● This is a review on R, NOT a review on Stats I.

○ RStudio Cloud and how it works.

● Nevertheless, we will be using different examples from the lecture and show
you how to apply them in R.

● Use these slides/script as a cheat sheet for your future self!

● What do we cover? What we have seen so far, and what we speculate that
you *might* need for the FDA!

● In this review, R code marked in blue font

Agenda
● RStudioCloud intro

● Scripts, functions and objects
● Clean environment and set working directory

● Datasets:
● How to open, clean, and get familiar with them (summaries, structure)

● Subsetting information
● Tables and CrossTabs in R
● Linear regression
● Graphs

R, RStudio & RStudio Cloud

R, Rstudio, and Rstudio Cloud

Scripts

● Use scripts!!!

● Scripts allow you to:
○ Write and correct your

functions, objects and
libraries

○ Document your work (for
yourself and others!!)

● In the FDA, you will be
required to attach your
script.

● Create, name & save a new Script:

1. Click on the plus symbol
and then on R Script.

2. Click on the save symbol

3. Choose a name and a
folder

Scripts - good coding practices

1. Start by cleaning your environment.

2. Set working directory

3. Load libraries (if any)

4. Load your data

5. Use # (hashtag) to write comments
(everything after the # will be treated
as something for human eyes)

Now go to the Script

R: Data Types and Structures

Objects
● Most general concept/term

● What is an object?
○ Almost everything that we use on R
○ A “vessel”: something that contains something else (vectors, data-frames, functions, etc.)

● How to create an object?
○ Decide on a name and use the assignment operator (“=”, “<-” or “->”)
○ tom = 3
○ “random text” -> victor

● Why use objects?
○ They are handy, practical and you can use them over and over again!
○ Example: reg <- lm(prestige ~ education + income + women, data= Prestige)

R data types
R has 4 basic data types:

● character: "a", "swc"
● numeric: 2, 15.5
● integer: 2L (the L tells R to store this as an integer)
● logical: TRUE, FALSE

R has many data structures. These include:
● vectors (character, logical, integer or numeric)
● matrix
● data frame
● factors

Linnear Rectangular
All
same
type

vector matrix

Mixed list data frame

Vectors

● Decide on a name and
● use the assignment operator

(“=”, “<-” or “->”)

○ tom = 3

○ “random text” -> victor

○ x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

Source: Phillip (2018)

Vectors

Command in R Gives you
a <- c(2,5,8) 2 5 8

b <- 2:8 2 3 4 5 6 7 8

c <- seq(2,4, by=0.5) 2.0 2.5 3.0 3.5 4.0

d <- rep(1:2, times=4) 1 2 1 2 1 2 1 2

e = rep(1:2, each=3) 1 1 1 2 2 2

● Different ways of creating vectors

Now go to the Script

Logical vectors

● Logical vectors are generated by conditions.
● Take the values: TRUE, FALSE, NA.

student_ages <- c(20,22,28,31,27,24,23,21,25,26)
student_ages > 25
[1] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE

● Logical vectors to clean our dataset from NAs:

is.na(world$corrupt) #returns a logical vector of the same size as world$corrupt with value
TRUE if the corresponding element is NA

!is.na(world$corrupt) #returns TRUE for those values that are Not NA

world.clean<-world[!is.na(world$corrupt),] #would clean dataset of NAs (rows with NAs for
variable HDI)

Now go to the Script

Factors
● Factors are used to store categorical data.

● Can be unordered (when the data is categorical/nominal) or ordered (when
the data is ordinal)

● Factors are stored as integers (1,2,3 …) , and have labels associated with
these unique integers.

○ Let’s see an example in R

Now go to the Script

Matrices and Dataframes
A dataframe is a “rectangular” type of object. Typically observations are in the rows
and variables in the columns.

The dataframe contains values that several observations take for different variables.
All columns have the same length.

Create a dataframe of boat sales:

bsale<- data.frame(name = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"),
 color = c("black", "green", "pink", "blue", "blue",
 "green", "green", "yellow", "black", "black"),
 age = c(143, 53, 356, 23, 647, 24, 532, 43, 66, 86),
 price = c(53, 87, 54, 66, 264, 32, 532, 58, 99, 132),
 cost = c(52, 80, 20, 100, 189, 12, 520, 68, 80, 100),
 stringsAsFactors = FALSE) # Don't convert strings to factors!

Note that the code above is somehow artificial, in practice we don’t use this too
much. A common task is to download/use data from official sources.

No, not this one!

Sí, this one!

Matrices and Dataframes

It is more common for us to open a dataset/dataframe that we
download from official websites, etc. (We also sometimes merge
different datasets given to us).

Let’s load and take a look our dataframe:

load("indicators.Rda") # Load an Rda dataset in R
View(world) # Open the data in a new window
head(bsale) # Show me the first few rows
str(bsale) # Show me the structure of the data
names(bsale) # What are the names of the columns?
nrow(bsale) # How many rows are there in the data?

Now go to the Script

Observations/rows Variables/columns/
vectors

values/cells

Opening different datasets

vs.

Datasets: open and save (I)

Type From Command in R Package

.csv Excel,
Stata,.
..

df <- read_csv(“c:/mydata.csv”)
write_csv(df, “mydata.csv”)

df <- read.csv("c:/mydata.csv")

df <- read.table("c:/mydata.csv", header=TRUE, sep=",",
row.names="id")

library(tidyverse) / library(readr)

library(foreign)

library(utils)

.xlsx Excel df<- read_xlsx(“c:/mydata.xlsx”)

write_xlsx(df, “c:/mydata.xlsx”)

mydata <- read.xlsx("c:/myexcel.xlsx", 1)
mydata <- read.xlsx("c:/myexcel.xlsx", sheetName = "mysheet") #
read in the worksheet named mysheet

library(readxl)

library(writexl)

library(xlsx)

Datasets: open and save (II)
Type From Command in R Package

.dta Stata df <- read_dta("c:/mydata.dta")
write_dta(df, "c:/mydata.dta")

df <- read.dta("c:/mydata.dta")

df <-read.dta13(“c:/mydata.dta”)

library(haven)

library(foreign)#if file generated w/ before Stata v13

library(readstata13)#if file generated w/ Stata v.13 or
newer

.Rda R :-) load("dataset_asia.Rda")
save(asia_full, file = "dataset_asia.Rda")

No package needed, baseR
Note: here you don’t need to assign a name to your
dataframe

.por SPSS mydata <- spss.get("c:/mydata.por",
use.value.labels=TRUE)
last option converts value labels to R factors

library(Hmisc)

Now go to the Script

Functions

Functions (I)

● What is a function?
○ A set of predefined instructions that allows us to do something in R.
○ You give an input, you get an output (see upper right corner)

● What “something”?
○ Almost anything! +2,7000,000 indexed functions to date (https://www.rdocumentation.org/)

● How to recognise a function?
○ They are ALWAYS a name, followed by brackets, such as: “some.function()” or “anyfunction()”

● How to use a function?
○ Essentially, put what you want to apply the function to in the brackets

● Tip: Not sure how a specific function works?
○ You can always type, in the console, the question mark before the function name to find out

more! E.g.: “?some.function” or “?anyfunction”.

https://www.rdocumentation.org/

Functions (II)
● Let’s see an example!
● median()
● Inside the brackets we define the “arguments” (e.g. default value of na.rm is

“FALSE”)

Functions (III)
● Some basic functions

○ mean(x)
○ var(x)
○ sd(x)
○ length(x), unique(x)
○ load(x), library(x) - opening datasets
○ cbind(x), rbind(x) - connecting columns or rows
○ table(x), prop.table(x)
○ summary(x)
○ is.na(x)
○ plot(x), hist(x), density(x), boxplot()
○ cut(x) - recoding data from interval to categorical
○ pnorm(x), qnorm(x)
○ t.test(x)
○ lm(x) - your (soon-to-be) favourite function

Now go to the Script

Data Transformation: Subsetting

Subsetting parts of your dataset
● Always start by writing the name of the object you want to subset (data set or variable), and then

squared brackets:

○ world.clean[rows , columns]

● Ask yourself: Are you subsetting rows or columns?
○ Rows: removing missing observations, or looking at certain groups of observations in your

data, e.g. democratic countries:
world.clean[world$demo == “Democratic” ,]

○ Columns: including only the variables that you are interested in:
world.clean[, c(“continent”, “hdi”, “demo”)]

● If you leave either rows or columns blank, you include everything

Now go to the Script

Optional: Subsetting with the “dplyr” package
● Functions from the “dplyr” package can be a good alternative to subsetting in base R:

○ filter() - subsets rows/observations by matching conditions
○ select() - subsets columns/variables by name

● In these functions, the first argument is the name of the dataset, and the following arguments are
the variables you want manipulate:

● First, I want to subset rows from the dataset, so I only have European countries that experience
economic growth:

filter(world.clean, continent == “Europe”, growth_cat == “Growth”)

● Second, I want to subset columns from the dataset, so I only have information about country name,
per capita GDP, and economic growth category:

select(world.clean, country, pcgdp, growth_cat)

Now go to the Script

T-Test

Difference of Means test (t-Test)
● Do democratic and non-democratic countries on average differ in their number of homicides?

1. Create a two subsets - one for democratic countries and one for non-democratic countries

demo <- world.clean[world.clean$demo == “Democratic” ,]
nondemo <- world.clean[world.clean$demo == “Non-Democratic” ,]

2. Use the t.test function to compare the means of the two subsets

t.test(demo$homicide, nondemo$homicide)

Now go to the Script

Crosstabs

Crosstabs with table() & prop.table()
● What proportion of countries on a specific continent (e.g. Asia) are democratic?

● table()

○ You can generate frequency tables using the table() function:

mytable <- table(world.clean$continent, world.clean$demo) # world$continent will be rows, world$demo will be
columns
mytable # print table

● prop.table()

○ You can then generate tables of proportions using the prop.table() function:

prop.table(mytable) # cell percentages
prop.table(mytable, 1) # row percentages (to answer the initial question, we need this command)
prop.table(mytable, 2) # column percentages

Now go to the Script

Linear Regression

Linear regressions (I)
● Create an object to contain a linear regression.
● For example, with the dataset “Indicators”, we can make a bivariate regression with

“corrupt” (control of corruption) as the dependent variable and “polstab” (political
stability) as the independent variable...

○ bi_reg <- lm(corrupt ~ polstab, data = world.clean)

● ...or make a multiple regression (don’t forget the “+”)...

○ mul_reg <- lm(corrupt ~ polstab + homicide, data = world.clean)

Linear regressions (II)
● ...use summary() to get your regression output in the console...

○ summary(bi_reg)

Linear regressions (III)
● ...and stargazer() to create a nice table that you can use in publications...

○ library(stargazer)
○ stargazer(mul_reg, title = "multiple regression", out = "reg.txt")

Now go to the Script

Data Visualization

Graphs (I)
● You can use the plot() function to create scatterplots, and abline() to draw lines

(such as the regression line) on bivariate regressions

○ plot(Prestige$education, Prestige$prestige) # first the “x”, then the “y”
○ abline(bi_reg) # the regression that we made before

Graphs (II)
● Or use the ggplot2 library!!
● Basic idea: you put layers upon layers of what you want to plot:

library(ggplot2)

ggplot(world.clean, aes(x = polstab, y = corrupt)) # specify dataset & x and y axes

Graphs (III)
● Basic idea: you put layers upon layers of what you want to plot:

library(ggplot2)

ggplot(world, aes(x = polstab, y = corrupt)) +
geom_point(color= “blue”) # specify that we want data points. The “+” is very important!

Graphs (IV)
● Basic idea: you put layers upon layers of what you want to plot:

library(ggplot2)

ggplot(world.clean, aes(x = polstab, y = corrupt)) +
geom_point(color= “blue”) +
geom_smooth(method = “lm”)

Graphs (V)
● Now, let’s make our plot even prettier:

library(ggplot2)

ggplot(world.clean, aes(x = polstab, y =
corrupt))+
geom_point(color="blue") +
geom_smooth(method = "lm") +
theme_minimal() +
labs(x="Political Stability",
 y="Control of Corruption",
 title = "Effect of Political Stability

 on Corruption Control")

Now go to the Script

Once you are done. Download your Script.

BACK-UP SLIDES

Setting up R and RStudio for the first time
Download both R and RStudio:

● R (the language that we will use):
○ https://cran.r-project.org/

● RStudio (the interface that we will use):
○ https://www.rstudio.com/products/rstudio/download/

● Once you have downloaded them both, you only need to open RStudio to be
able to use R

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/

How RStudio works

ALL YOUR OBJECTS
GO HERE

THE HELP,
WORKING

DIRECTORY AND
PLOTS WINDOW

THE AREA FOR THE
SCRIPTS

THE CONSOLE:
YOUR RESULTS

WILL APPEAR HERE

